


Cambridge Waste Water Treatment Plant Relocation Project Anglian Water Services Limited

Appendix 14.3: Geoenvironmental Results – proposed WWTP

Application Document Reference: 5.4.14.3

PINS Project Reference: WW010003

APFP Regulation No. 5(2)a

. T	****	•					Che Che	Care	Co e	Car	Co e	Co e	Coo	Co •	Co e	Co e	Co e	Co e	Co e	Co e	Co e
								2 -25400	2 -	2 -	2 -27533	2 -08 34	2 -	2 -0828	2 -	2 -	2 -90805	2 -	2 386	2-25-6	2 -00854
us atom No. CD -34797 de No.																	27.5000				
								BHS WG S	BH_S W_COS	8H_8 W_009	BHUS WUDDA	BHUS WUD SA	au wo s	SHUS WUD SA	8 90	84, 8,004		8H8 W-000	8H_8 W_00	8H_8 W_029 04	_8 W_007
				11.6	* * *	57	77	— —	-	-			-								
	_				٠.		1	22- ui- DURHA	28- u-	28- u-	CO-Aug- CURNA	0 Aug-202	Ag	3Ag-	39-Aug-303 COVEN R	28 Aug-002 DLRHA	COVEN R	03-Rep-202 COVEN R	0- u-2 DURHA	20- st 2 DURNA	DLEGHA
			_					*		WMCK				au o		WWX			SU D	SU D	8
CM ye		2 92	NA															-	-		
stestos den i caton		2 92	NA.	-:	- :	-:	-	No	No	No Astes os	No	No	No Asbes os	No Asbestos	No Adhes os	No Aubes os			No Aubeston	No Asbestos	No Asbes os
of Color		2042	NA.					٠,	٠,		٠,	٠,	•	To Assess	•	-	-	•	٠,	٠,	
the Make of		2040	NA					8 ones Roots	2 ones			Stores		Stones	Stones	-	1	_	*		
H con Marking & Statem		20 0 2 20 mg/sg 2 20	4 04	-:	-:	-:	-:-	,		,		,		,	-		-	,	-		
o on (Hot Wale Souther) utdrate 2 Water Southerlass SCH otal Su phu		2 22 2 75	00	- :	- :	:	- :	-:	-	-	`	-		,			-		-		\Rightarrow
sanide (ee)		2 75 2 75 2000 meta 2000 meta 2000 meta 2000 meta 2000 meta	05 00	-:	- :	- :	- :				•			•						•	
A 100		2000 make 2000 make	0	72 5800	72000 5800000	540 22000	\$40000 22000000	-	- :	-		-	-	- :	-	-	-	-	-		-
ACIAN ACIAN Longo		260 mete 260 mete 260 mete		580 580	60000 560000	2 90	2000 90000	-		—		-	_	-	- ;	_	_	-			•
Management		260 mete		- :	- :	-:-	-	•		-	•	-	-	-	-	-			* .	* •	
at mony oppe		2000 moto 2000 mg/sg	2 05	2000 44000	2000000 44000000	7400 68000	7400000 86000000	,	-	-		-	-	,	-		-	-	—		-
Me ou v		2600 make		-		-	-	-		-			-	-	-		-	,	-		_
elec un elec un enel un		2000 mate 2000 mg/g	05 02	100 100 1000	200000 800000	2000 2000	2000000 2000000	-			-			•	-:					•	-
		2002 10010			5000000	9000	9000000	- ;	- ;	- ;	- ;	-	÷	- ;	- ;	-					
h onum (wiedt h onum Heave en) acte o O oeric Calton		2000 mg kg	05	20000	2000000	-	8600,000			-				•							-
		2025 2025 2002 2025 2002 2025 2002 2025 2002 2025 2002 2025 2002 2025 2002 2025 2002 2025 2002 2025	- 00	50000	5000000		7900000	Ė	Ė	Ė	- 1	_		_	Ė		-	_		•	-
SAME HIGHER SAME HIGHER SAME HIGHER SAME HIGHER SAME HIGHER		2000 mg kg		2 000 2 000 25000	4200000 2 000000 25000000	7600 2000 8730 56000	200000	:			-						-		-	-	
		2000 mg/g		25000	25000000	59000	59000000				- 1								_	_	
Inhes Name - CHS		2000 mg/g 2000 mg/s		-	-	-					[0] 44 L										
otal Apta is Hyd osa toma otal Apta is Hyd osa toma ona is Hydb-C7		2000 mg/kg 2000 mg/kg		70000	70000000	20000	2000000				-	_									
oralis HYCHCS		2000 mg/sg 2000 mg/sg 2000 mg/sg 2000 mg/sg		87900 7900	87/200000 72/200000	54000 3500	3600000				- 1										
arak HYC SC 2		2002 10010		8000	80'00000	6000	8000000				i						-		-		
omeio HHC ECS omeio HHCS CSS		2000 make 2000 mg/sg		7600 7600 7600	7600000 7600000	28000 28000 28000	200,000	•			0047	_					-				
analis Hocasicas		2000 make			79/200000		200.000	-			D0 67 D0 33	-					-		-	-	
otal et deum Hot oce bone aph he ene senach byene		2000 make 2700 make 2700 make	0	200	200000	90 60000	90000	-			-	-		-			==		-	-	
		2700 make		20000	20000000	60000	6000000	*	*	•	*	*	·	*			-		*	*	-
to see betan hisne of some		2700 make 2700 mg kg 2700 make	0	6200 50000	62/20000 5/20000000	22000 52000	2200 00000 \$200 00000		-			- :					-		- :	-	
v ene enzolgieth exerce		2700 mete 2700 mete 2700 mete 2700 mete 2700 mete	0	5000	500000	54000 72	54000000	Ė,	÷												
h sece h sece exciji to ardere		2700 mg tg 2700 mg tg	0	- 89	69300 89300	72 200 44	70000 200000 44000		\vdash												
erack) to arrhere eracking ere		2700 mate 2700 mate	0	272	272000 272000	200	200000	_						-			-		_	_	
nderor 22-c-0 v ene Lengs h Anth-scene		2700 mg kg 2700 mg kg	0	50	50000 00	900 25	900000 3000	-	\Rightarrow		-	\Rightarrow		\Rightarrow			=		\Rightarrow	-	=
station to rene station of Mrs. should us orrethere		2700 make 2700 make	0 2		400000	2000	2900000													_	
sho od us omethere tio ome here		2700 pg kg 2700 so ke		- :	- :	- :					-										
omore tene No cettene		2760 to le 2760 pg lg	20	54000	5400000	. 800	900000				-										
dita a so continue		2792 to be			-	-	-				- 1						-				
ans 2D sho se here Cotto sediane a 2D sho se here		2760 so to 2760 pg tg		20000	20000000	200	200000				- 1						-		-	-	
s 2D sho se tere		2792 so to		-	-		-				- 1						-		-	-	
discome tame - lates on tame at asite constance		2760 to to 2760 pg tg		57900	57900000		860000				- 1								-		
		2760 pg kg 2760 pg kg 2760 pg kg		. 10	90000	- 27	27900				i						1				
2 Cutto settane dits settane 2 Cutto op spene		2780 pg kg	2	2 70 60	2 000 70000 60000	27 0 67	672				- 1						- :				-
		2760 jg lg 2760 jg lg 2760 jg lg					3 00				-								_		
oredship onethere		2700 pg kg	5 0	58	58000	2	2000				- 1						-		-	-	
obsere ane 3 Obiho op opene 3 idho de tene et adho de tene		2760 jg lg 2760 up le		E7900	8700000	58000	5600,0000														
2: May be have at act to de have		2780 so la 2780 pg la	•	8 0	8 0000	1	9000														
Second at Maria		2782 10 10	5	-													- :		-	-	
2.05 oroethere tio obergene 2. et autio cellene		2790 so la 2790 pg la 2790 so la	2	300	30000 50000	56	58000 0000										-		-	-	
							_				- 1						:		-		
nd profese Zyene v ene		2790 so to 2790 so to 2790 so to		7000	7000000 5900000	0000 2200	9800000 2200000				- 1						-		-		
		2792 so la 2792 so la 2792 so la 2792 so la		20000	29300000	300 80	200000										1		7	-	
onoberane onoberane 23- lifts so some		2780 pg kg 2780 pp kg	50		800000	- 1	80000														
Chic c a sene 35 inatiytanana		2760 to be		-:	-:	-:	-										—				
Chic o a sene e -its ytten ene		2780 ye te 2780 ye te 2780 ye te		- :							- 1						-		-	-	
2.6 instriberane ec-its yterane		2760 pg kg 2760 pg kg 2760 pg kg		2.0	3 0000	20	29000				- 1						_				
3 Cotto sterane leg opyto sene		2760 so to 2760 so to 2760 so to		300	39/0000		30000				- 1						-				
A Cobb sterane Authorate 2 Cobb sterane		2782 up to 2782 up to 2782 up to		20000	20000000	- 6200	6200000										-				
2 Colle sherane 2 Co one-3 Ch c so come		2780 pg kg 2780 pp kg	50	34000	24000000	2000	2000000				- 1										
manh o sho ad one		2760 un la 2760 pg lg	2		60000		3 000														
mach o storadare 23- tota obsesse Medici a disvilible		2782 to be		96000	96000000	7500	7500000												-		
tensi essis venos		2022 mate 2022 mg tg	000	440	642000	- 440	440000	-				-		-			-		-		
vanca		2002 19050	0.00				-				-								-		-
rethy stends del hexis		202 mate 202 mate	0 00	- :	-:	-:					-	-							-		-

The part					1000	_																				
The column The		****	٠.							Che .	to set unto a	n etule e	In ad vote a	n estudire	to estudio	in set unto s	nature	In set unto e	n est ustre	to estudio	in set usts e	In estudios	In set ustu a	h et uits e		
The column The											2 -28394	2 -01094	2 -2000	2 20002	2 -28882	2 -294 6	2 -394 6	2 -294 6	2 2028	2 -0101	2 -28386	2 -01086	2 -01019			2 -
Column	ue atom No. C2 -34797 de No.					$\overline{}$					28 23		260300				200476				28 04	26 05				<u> </u>
						1					86_ 6_00S	86_ 6_00	UN-003	84, 6,00	84_ 6_00	BH_CU -60	erton co	8H- UN- 002	BH_ E_00	BH_ E_00	864		*	B		4
1						=			7.7	7.7												- :	0.5		0.5	05
1		-				1	2.5	` `."	4.0	7.5	0Aug-000	0-Aug 202	6Ag-202	8-Aug 202	8-Aug 202	9Aug-202	PAug 200	23 Aug-202	2Aug202	2Aug 202	3Aug-302	3-Aug 202	29- st 2	20- ui-2		
## Column						7																	DURHA	DURHA	DURHA	DURHA
## Column			_									EUPO .	MOR	8	SUPD.	su D	suro.	MOR		SUPD.	SU D	BUPO .	MOR	RD	WWX	WMCX
STATE OF THE PROPERTY OF THE P	CM yes		1	10	-	ı.																				
Series Se	stestos den i caton	-	2	80		IA.					No Addres on		No Asbestos	No Asbes os				No Asbestica	No Address on		No Address on		16	*	No.	No.
Column	of Color					4					_			***		812	_	- Brown						-	-	
	to Note of	-	20	963		IA.	•						Sai	361		San	-	540			- Na		2 ones	8 ones	None	Stones
	o on Stat We + Statute()	=	2	20 mg/s			:	:	:	- :			-	-					-		-	-	-	-	-	
	state 2. Well-Sout-eles 904 stat Suphi	=	2 2	20 75	2.2	\pm	:	:	:	- :	-:		\Rightarrow	-,`		-:		\Rightarrow	-, `					-:	-:	-
	untide (ee)		20	CO moto		20	-:	-:	- :	- :			-	,		•		-	•		-		•	•	•	•
The column 1	A UID	=	20	do net			72 5600	70000 \$600000	640 22000	840000 22000000	-:		-:	-:		-:							-:-	-:	-:	-
The column 1	*YIM	-	2	GC mate			500	62000 Second	2 80	2000 90000						•							•	•		
Service			21	dd ngty dd natu			-:-	- :	- :	- :			-:	-:		-:-		-:	-:				-	-:	-	-
		=	24	dd mele			2000	202000	7400	7400000	•			•		•							_			
	oppe Me ou v		21	dd ngh dd nah	9 0	5	44000	44000000	68000	88000000			-:										-	-:		_
Martin			20	da nek		5	200	300000	2900	2000000	- :		-:-					- :						-:	-:-	
Martin	eten um anad um		21	dd ngty dd neti	0 0	2	900 5000	800000 5000000	2000	200 0000 9000 000						-		, ,					•			
Martin	house whet		21	ed not		+		22000000		8600000				•				,					,			
	h onum Heave en) aciss o O ossio Ca ton		21	erd ingly	0.00	1	-:-							•				<0000	•		- *					
M. 1915. 1	ISME HYCICS		2	no in		\pm	50000	50000000	7900	7000000	-	•	•	•	-	-	-	-	1	-	•	-				
## Company Com	SMES HINCHC D		2	nd ngh		\pm	4000	4300000	2000 8730	2000000 8700000		-	•			-										
## Company Com	Ighes H>C 2-C 6 Ighes H>C 6-C2		2	nd ngh		1	25000	25/000000	59000						_		-	_								
## Company Com	Iphata HHC2-C35		2	nd ngiy		\pm			- :			-			-		÷		•	-		-				
## Company Com	oracio HINCS-CT		2	nd ngh ngh		\perp	70000	Personne	20000	20000000								_	•							
## Company Com	oma is HHOF OR		2	ed net		\pm	87000 7300	87000000 7200000	2000	2000000	-	-	-	- ;	-		-	-		-	-	-				
# Company No. 19	arak HIC SC 2		- 2	make	•	\pm	8000	8020000	8000	600,0000		-	-	•	-	•	-	-		•	-	-				
# Company No. 19	ore is HYC 8CD		2	ed make		\pm	7900	7600000	28000	2000,0000						-		-				-				
# Company No. 19	MAN HICKOR		- 2	me to	•	\pm	7900	7600000	20000	2000000		-	-	-	-	•		-	•	-		-	_			
## Company 100	otal et sieum Hod one bone aph he ene		21	TO make	9 0	•	200	200000	- 80	90000	•	-			-	•			•	- 4		-	•	•	-	
## Company 100			20	TO make		4	2600	2000000	6600	-										- 4						
## Company 100	heren it ene		27	TO FIGUR		#	20000 8200	E/20000	22000	22000000		-					-	4		4			-		- 4	
## Company 100			- 20	TO THE R							·	-	•	·						- 4			-	•		
## Company 100	eralgianth asses		2	00 mg ty		#	49	600	73	70000								-		4				÷		
## Company 100	erziji ko arđene		27	TO FIGURE			1	3000	44	44000	•	•		•	_	•	_	_	•	-	•	_	-	•	_	
## Company 100	enaciony ene		2	00 mg ty				900	25	25000	•	÷		- ;		•	\Rightarrow	\Rightarrow	-	- 4	-	-	\Rightarrow	\div	\Rightarrow	
## Company 100	berg(a h. Arth acene		2	TO FIGURE				-	25	2000		-					-	<u> </u>		-			-	-	_	
No. 1964 1965 196	SEC S No.		- 2	TO make		4		- 40000		20000	-				-	-		-	-			-	•	•		
Marie 170 18	tio one have		20	100 mg No.	-	+					÷	÷	÷	- ;		÷	÷	-	- ;		- ;			-	;	
## 1.00 m/mm 197 m	concretane					•	54000	54000000	. 900	900000		-										-	_			-
## J. D. C. M. 1988 1. 100	dia a so cretture		20	MIC NO NO		\mp				-	-					-	-	-	-			-	=			-
1. District from 1. The first state of the s	Colle cellere		20	100 to 10		7	20000	20000000	200	200000	-				-		-	-	-			-	_			- 1
### 1	s 2D sho se here		- 21	Med to be		\pm			-			•				-		-		•			_			-
### 1	ship one have - isho on have		20	100 mg to 100 pg to		\pm	57000	57000000		860000																
10 August 10 August 10 August 10 August 10 August 11 Aug			20	WE IN N		Ŧ									·	-	÷									
10 August 10 August 10 August 10 August 10 August 11 Aug	2 Colle settene		27	10 to 10		1	2	2 000	27 0 67	27900 670																
10 August 10 August 10 August 10 August 10 August 11 Aug	20 others		20	Miles Inches		Ŧ	70 80	70000 80000	2	200 3 00	-	-	-	-	-	-	-	-	-	-	-	-				
10 August 10 August 10 August 10 August 10 August 11 Aug	b promettere oraclub o prefere		27	Miles Inches		ď	50		2				•													
10 August 10 August 10 August 10 August 10 August 11 Aug	a- 2 Oktho co-scene storne		27	10 to 10		4			58000								,			- 1		,				
10 August 10 August 10 August 10 August 10 August 11 Aug	2 May on time		20	100 to 100 100 to 100		1			100						-							-				
10 August 10 August 10 August 10 August 10 August 11 Aug	3 Colto so come		20	ed poly	щ.			# 0000 -				-	-				=	-								
A A A A A A A A A A A A A A A A A A A			27	MS to be		4	-		-	-	- ;	-	-		- ;	-	-	-	- ;	- ;	-	-				
A A A A A A A A A A A A A A A A A A A	2- et autio celture		2	10 to 10	1	4	500	50000		2020	- :	-	-	- ;	- ;	-	- ;	-	- ;		-	-				
1982 19	nd others		2	10 to 10		#			-				-	- ;	- ;		- ;	-	- ;		- :	-				
Continue	Tyens Tana		20	Mil so he	#	#	5900	5900000	2200	2200000	-	-	-	- ;	- ;	-	-	-	- ;	-	- ;	- ;				
23 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	son on because		20	10 to 10		#	20000	2300000	200	200,000				-			-	,	,							
Schmiddens	23- Ma maren		2	10 to 10	-	•			- î	-2000				,				,	,			-				
Schmiddens	Chicagona		20	Mil so le		#	-																			
Schmiddens	Chicagone		2	100 to 10		#	-				-	-	- :	- :	- :	-	- :	- :	- ;	-	- :	- :				
Schmiddens	24 instrument		2	100 to 10		#		3 0000	29	20000																
Schmiddens	3-Colle sterane		2	10 to 10		#	290	29000								- :	- ;	- ;								
Schmiddens	4-C-chic obersene		2	100 to 100		#																				
mail of side 1970 44	2 Colle sterame		- 20	PEC HIS N			34000	24000000	2000	2000000	•		•	*	- (_	*	*							
						+			,	3 000	-					•	_									
	23- kilo sterpere		1 2	10 pg 19	1	#																				
### #### #### #### #### #### #### #### #### #### #### #### #### #### ######						#							- ;		- (•	_						*	*		
	ests		12	OT PRIN	0.00	#	-		-	-	-					-							*	<		
	metro stenois		1.	02 700	000	#	-	-	-		•	*	*	*	<	*		*	4	<	*	<	*	*	<	
	dat bends		- 6	22 mais		_				-		₹			₹		*			₹		₹		*	₹	

							Results - Leachate							
Project: TE8364 Cambridge Waste Water										1				
riojest. resour sambriage maste mater	· ricuancin		ioodiioii	•						core	core	infrastructure	infrastructure	infrastructure
Client: Soil Engineering Geoservices Ltd					nemtest b No.:					21-26285	21-28134	21-28963	21-31059	21-26263
Quotation No.: Q21-24797				Chem						1251058	1260362	1264390	1274689	1250924
					Clie			l		8	2	2	2	8
					Sample	UK			l	BH_STW_009	BH_STW_012A	TUN-003	BH-TUN-001A	BH_TUN_004
	9					DWS	UK DWS	EQS mg/l	EQS	SOIL	SOIL	SOIL	SOIL	SOIL
						mg/l	ug/l		ug/l	1.1	0.2	0.2	0.2	1.1
					Bottom			l		1.2	0.2	0.25	0.25	1.2
	_		Strata:					l		28-Jul-2021 WMCK	10-Aug-2021 MGR	16-Aug-2021 MGR	06-Sep-2021 MGR	44405 RTD
Determinand	Accred.	SOP	Type	Units	LOD					WINCE	WOR	MOR	WGK	KID
pH	U U	1010	2:1	Omics	N/A			-	-	8.5	8.2	7.2	8.9	8.3
Chloride	ŭ	1220	2:1	mg/l	1	250	250000	-	-	1.8	2	2.3	1.8	9.6
Fluoride	Ü	1220	2:1		0.05	1.5	1500	-	-	0.55	1.6	1.2	0.8	0.35
Ammoniacal Nitrogen	Ŭ	1220	2:1		0.05	0.38	380	0.2	200	0.11	0.67	0.061	0.075	0.15
Sulphate	Ü	1220	2:1	mg/l	1	250	250000	-	-	7.7	8.7	160	13	110
Cvanide (Total)	Ū	1300	2:1		0.05	-	-	-	-	< 0.050	< 0.050	< 0.050		< 0.050
Cvanide (Free)	U	1300	2:1		0.05	0.05	50	0.001	1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Cyanide (Complex)	Ū	1300	2:1	mg/l		-		-	-	< 0.050	< 0.050	< 0.050	0.1	< 0.050
Calcium	U	1455	2:1	mg/l	2	250	250000	-	-	24	29	69	32	68
Magnesium	Ü	1455	2:1	mg/l	0.2	50	50000	-		0.76	0.72	2.7	1	3.2
Arsenic	Ü	1455	2:1	µg/l	0.2	0.01	10	0.05	50	0.34	2.8	1.8	0.003	6
Boron	U	1455	2:1	µg/l	10	1	1000	2	#	43	35	64	0.02	130
Barium	U	1455	2:1	µg/l	5	1300	###	-	-	< 5.0	6.3	53	0.019	11
Beryllium	U	1455	2:1	µg/l	1	-	-	-	-	< 1.0	< 1.0	< 1.0	< 0.001	<1.0
Cadmium	U	1455	2:1	µg/l	0.11	0.005	5	##	0.08	< 0.11	< 0.11	< 0.11	< 0.00011	<0.11
Chromium	U	1455	2:1	µg/l	0.5	0.05	50	-	-	< 0.50	0.97	< 0.50		1.9
Copper	U	1455	2:1	µg/l	0.5	2	2000	0.001	1	2.4	4.4	7	0.0072	15
Manganese	U	1455	2:1	µg/l	0.5	0.05	50	0.123	123	2.7	4.8	2	0.0013	1.5
Molybdenum	U	1455	2:1	µg/l	0.2	0.07	70	-	-	6.4	2.3	21	0.013	15
Nickel	U	1455	2:1	µg/l	0.5	0.02	20	0.004	4	< 0.50	2.3	3.8	0.0014	4.3
Lead	U	1455	2:1	µg/l	0.5	0.01	10	0.0012	1.2	< 0.50	1.4	< 0.50	< 0.0005	<0.5
Antimony	U	1455	2:1	µg/l	0.5	0.005	5	-	-	< 0.50	< 0.50	0.83	0.0013	3.8
Selenium	U	1455	2:1	µg/l	0.5	0.01	10	-	-	0.58	< 0.50	1.3	0.0012	1
Vanadium	U	1455	2:1	µg/l	0.5	-	-	-	-	0.55	3.9	2.3	< 0.0005	10
Zinc	U	1455	2:1	µg/l	2.5	5	5000	0.0109	10.9		< 2.5	< 2.5	< 0.003	2.5
Mercury Low Level	U	1460	2:1	µg/l	0.01	-	-	-	-	< 0.010	< 0.010	0.02		<0.01
Iron	N	1455	2:1	µg/l	5	0.2	200	1	#	< 5.0	1400	13	0.042	11
Chromium (Trivalent)	N	1490	2:1	µg/l	20	-	-	0.0047	4.7	< 20	< 20	< 20	< 20	<20
Low-Level Chromium (Hexavalent)	N	1495	2:1	µg/l	0.1	-	-	-	-	< 0.10	0.17	0.16	< 20	0.65
Total Organic Carbon	U	1610	2:1	mg/l	2	-	-	-	-	15	9.1	8.6	40.0000	19
Resorcinol	U	1920	2:1		0.005	-	-			<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Phenol	U	1920	2:1		0.005	#	0.5	0.0077	7.7	<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cresols	U	1920	2:1		0.005	-		-	<u> </u>	<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Xylenols	U	1920	2:1		0.005	-		-	-	<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1-Naphthol	N.	1920	2:1		0.005	-	-	-	<u> </u>	<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Trimethylphenols	U	1920	2:1		0.005	-	-	-	-	<	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Total Phenols	U	1920	2:1	I ma/l	0.03	-	-	-	-	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030

Project E3384 Cambridge Waste t Relocation Client: Soil Engineering Secondros Ltd. Suddat on No. Order No.:				Chem	tect ob No:					Groundwater Infrastructure 21- 0931	infrastructure 21- 093	infrastructure 21- 0935	infrastructure 21-38515	infrastructure 21-38515	infrastructure 21-38515	infrastructure 21-3838	infrastructure 21-3838
Geosentions List Quidat on Na.: Order Na.: Determinand PH Total Dissolved Sci ds				Chem						21- 0931	24- 002	21- 0935	21-38515	21,39515	21-38515	21-3838	21-3030
Order No.: Deferminand A SH Total Dissolved Sol ds																	
					Samo e Ref.:					132 639 2	132 6 6	132 6 7	1312386	1312387	1312388	1311775	1311776
		_		Sampl	e Locaton: e Type:	UK DW8 mg/l	UK DW8 ug/l	EQ8 mg l	EQ8 ug/l	BH TUN 011 WATER	BH FE 001 WATER	BH FE 002 WATER	BH TUN 001A WATER	BH FE 001 WATER	BH FE 002 WATER	BH TUN 011 WATER	BH TUN 006 WATER
				Date 8	epth (m): sampled:					17-Nov-2021	17-Nov-2021	17-Nov-2021	03-Nov-21	03-Nov-21	03-Nov-21	02-Nov-21	2 02-Nov-21
	voored	80P	Unit	Strata	.00					WMCK/CBG	RTD	WMCK	RTD	SUPD	WMCK	WMCK	MGR RTD
		1010	mg/l	1	VA	-:-	-		- :	11.5 1000	7.9 910	720	8.3 980	910	90	11.7 1700	8.3 850
Alkalinity (Bicarbonate)		1220	mg CaCO3/I	1	0	-	-	-	-	22	80	350	350	10	230	25	0
Chloride Fluoride		1220 1220	mol		.05	250 1.5	250000 1500	-:-	-:-	51 0.57	190 0.25	95 0.19	120 0.33	210	93 0.25	7 0.7	1 0 0.22
Ammoniacai Nitrogen		1220 1220 1220	mg/l mg/l	0	.05 .5	0.38 11.295	380 11295	0.2	200	0 27	18	81	0 28 <0.5	0.27 <0.05	<0.05 65	0.51 11	0.66 8.3
Nitra e Sulphur Sulphate	=	1220	mg/l mg/l			250	250000	-:-	-:-	19 56	120	130	1 0	130	7	13	80
Cyanide (Free) Cyanide (Comp ex)		1300	mg/l mg/l		.05 .05		-	-:	-:	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	2 0 < 0.050 < 0.050
Caclum		1 55	mg/l	2		250	250000			100	2 0	180	150	220	160	92	210
Potassium Magnesium		1 55 1 55 1 55	mg/l mg/l		1.5	12 50 200	12000 50000 200000	-	-	< 0.20	6.7	6.1	1	7.1	6.3	<0.20	12
Total Hardness as CaCO3		1270	mg/l mg/l	1		-		-		260	620	70	160 30	590	30	230	570
Arsenic Boron Barlum		1 55 1 55	mo/		.01	0.01	10 1000	0.05	50 2000	0.0022 < 0.01	< 0 0002 0.07	< 0.0002 0.07	0.0007 0.17	0.0003	0.0003	0.0026 0.01	0.0015 0.25
Beryllum		1 55 1 55	mg/l	0	.005 .001	1300	1300000	-	- :	0.12 < 0.001	0.087 < 0.001	0.0 9 < 0.001	0.085 <0.001	0.081 <0.001	0.0 5 <0.001	0.097 <0.001	0.079 <0.001
Cadmium Copper		1 55	mg/1	0.000	5	0.005	2000	0.00008 0.001	0.08	< 0.00011	< 0.00011 0.0027	< 0.00011	< 0.00011 0 0022	< 0.00011	< 0.00011 0 0011	< 0.00011 0 015	0 00067
Mercury Manganese		1 55 1 55	mol	0.000	5	0.001 0.05	50	0.00007 0.123	0.07 123	< 0.00005 0.0011	< 0.00005	< 0.00005 0.0026 < 0.0002	< 0.00005 0.059	< 0.00005	< 0.00005 0.0069	<0.0005 <0.0005	<0.0005 0.86
Molybdenum Nickel		1 55	mg/l mg/l	0.000	2	0.07 0.02 0.01	70 20	0.00	-	0.062	0.0003	0.0039	0.0017 0.0082	0 0005	0.0006	0.006	0.0053
Lead Antimony		1 55	gil mgil	0 0000	5	0.01 0.005	10 5	0 0012	12	0 0068 0 00 8 < 0.0005	0 0016 < 0 0005	< 0.0005	< 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	<0.0005 <0.0005	<0.0005 0.001
Se enium Vanadium		1 55 1 55		0.000	5	0.01	10	-		0.013 0.012	0.003 < 0.0005	0.003	0.0011	0.00 < 0.0005	0.00 1 < 0.0005	0.01 0.01	0.0025 0.0011
Zinc Iron		1 55	mg/l	0	.002	5	5000 200	0.0109	10.9	0.006 0.19	0.006	0.008	0.003	<0.003 <0.005	< 0.005 < 0.005	<0.003 0.2	0.006 0.019
Chromium (Trivalent) Chromium (Hexavalent)		1 90	mg/l		1.005 1.02 1.02	-	-	0.00 7 0.003	.7 3	(B) 9 4 (B) < 0.020	[B] < 0.020 [B] < 0.020	(B) < 0.020 (B) < 0.020	0.02	<0.02	0.02	13	<0.02 <0.02
Aliphatic TPH >C5-C6		1675	µg/l	0	.1	0.01	10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Alphatic TPH >C6-C8 Alphatic TPH >C8-C10		1675	ual ugi		1	0.01 0.01	10	:	- :	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Alphatic TPH >C10-C12 Alphatic TPH >C12-C16		1675	ugi ugi	-	.1	0.01 0.01 0.01	10	:	-	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aliphatic TPH >C16-C21 Aliphatic TPH >C21-C35		1675 1675	ugi ugi	0	.1 .1	0.01 0.01	10 10	-	-	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 1 0	< 0.10 70	< 0.10 230	< 0.10 370	< 0.10 200
Allphatic TPH >C35-C Total Allphatic Hydrocarbons		1675 1675 1675	lou lou	5	.1	-		- :	- :	< 0.10 < 5.0	< 0.10 < 5.0	< 0.10 < 5.0	< 0.10 1 0 < 0.10	<0.10 70 <0.10	<0.10 230 <0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C5-C7 Aromatic TPH >C7-C8		1675 1675	µg/l µg/l	0	.1 .1	0.01 0.01	10	0.01 0.07	10 7	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C8-C10 Aromatic TPH >C10-C12		1675 1675	ugi ugi	0	.1	0.01 0.01	10	-:	-:	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C12-C16 Aromatic TPH >C16-C21		1675 1675	uol lou	0	.1	0.01 0.01	10	-:-	-:-	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C21-C35 Aromatic TPH >C35-C		1675 1675	ugi Igu		11	0.01 0.01	10	-:	-:-	< 0.10 < 0.10	< 0.10 < 0.10	93	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Total o a ic H d oca o s Total Petro eum Hydrocarbons		1675	µg/l	5		-	-	-	-:	<50 <10	<50 <10	93	<50 1.0	<50 70	8 280	< 5 0 370	< 5 D 200
Dichlorod fluoromethane		1760	ugi ligu			-		-	-	<1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<10
Chloromethane Vinyl Chlorde		1760 1760	uol pol		_	0.0005	0.5	-	-	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	< 1.0 < 1.0	<10 <10
Bromomethane Chloroethane		1760 1760	µg/l µg/l	2	5	-	-	-	-:	< 2.0	< 5 < 2.0	<5 <2.0	<2.0	< 2.0	<5 <2.0	< 5 < 2.0	<5 <20
Tr chiorofluoromethane 1,1-Dichioroethene		1760 1760	µg1	-1		-	-	-:-	- :	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	<10 <10
Trans 1.2-Dich oroethene 1,1-Dichloroethane		1760 1760	ual ugi	-		-:	:	-	-	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<1.0 <1.0	< 1.0 < 1.0	< 1.0 < 1.0	<10 <10
cls 1 2-Dichloroethene Bromochloromethane		1760 1760	Pgt Pgt	1	5	-:	-	-	-:-	<1.0 <5	<1.0 <5	<1.0 <5	<1.0	<1.D <5	< 1.0 < 5	< 1.0 < 5	< 10 < 5
Trichloromethane 1,1,1-Trichloroethane		1760 1760	µg/l µg/l	1		-:	-:	0.1	100	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
Tetrach gromethane 1.1-Dichlorgorgoene		1760	uol Iou			-:	-:-	-:-	- :	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
Benzene 1,2-Dichioroethane		1760 1760 1760	ugil ligu	-		0.001	1	0.01	10 10 10	<1.0 <2.0	<1.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	< 1.0 < 2.0	<10 <20
Tr chloroethene 1,2-Dichloropropane	=	1760 1760	ugi ugi	1		0.003 0.01 0.0	10	0.01 0.01	10	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
Dibromomethane		1760	ual			-	-	-	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Bromodich oromethane cis-1,3-Dichloropropene		1760 1760	uol ugl	1	0	0.06 - 0.7	-	0.07		<10	< 5 < 10	<5 <10	<10	< 5 < 10 < 1.0	< 5 < 10	< 5 < 10 < 1.0	< 10 < 10
Toluene Ta s-1 3-Dic oo o e e		1760 1760	ugi ligu			-	700		- 00	<1.0 <10	<1.0 <10	<1.0 <10	<1.0 <10	<10	< 1.0 < 10	< 10	< 10
1,1,2-Trich oroethane Tetrach oroethene		1760 1760	ugi ugi		U	0.01	10	0. 0.01	10	< 10 < 1.0	<10	<10 <1.0	<10 <1.0	<10	< 10 < 1.0	< 10 < 1.0	< 10 < 10
1.3-Dichioropropane Dibromoch oromethane 1,2-Dibromoethane		1760 1760	ual ugi	1	0	0.1 0.000	100	÷	-	< 2.0 < 10	<2.0 <10	< 2.0 < 10	< 2.0 < 10	< 2.0 < 10	< 2.0 < 10	< 20 < 10	< 20 < 10
Chlorobenzene		1760	ugi Igu		5	0.000	O. -	-	-	< 1.0	< 5 < 1.0	<5 <1.0	<1.0	< 1.0	< 5 < 1.0	< 5 < 1.0	<5 <10
1,1,1,2-Tetrachioroethane Ethylbenzene		1760 1760	Pg/I Pg/I	1		0.3	300	-	- : -	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	< 2.0 < 1.0	< 2.0 < 1.0	<20 <10
m & p-Xviene o-Xviene		1760 1760	ual ugi			-	-	0.01 0.01	10 10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	< 1.0 < 1.0	<10 <10
Styrene Tribromomethane		1760 1760	pg/l Pg/l	1		0.02	20	-		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
Isopropylbenzene Bromobenzene		1760 1760	µg/l µg/l	1		-:	:	:	- :	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
1.2.3-Trich oroorooane N-Proov/benzene		1760	lou lou	5	0	-	-	-		< 50 < 1.0	< 50 < 1.0	<50 <1.0	< 50 < 1.0	< 50 < 1.0	<50 <1.0	< 50 < 1.0	< 50 < 10
2-Chloroloiuene 1,3,5-Trimethylberizene		1760 1760 1760	ugi ligu	- 1		-:	:	-:	- :	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
-Chiarobiuene Tert-Butylbenzene		1760 1760		1		-	:	:	- :	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
1.2Trimethylbergene		1760 1760	ual ual			:	:	:	-:-	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
Sec-But/Ibenzene 1,3-Dichlorobenzene -Isopropytoluene		1760 1760	ugi Teu			:	: -	-	- :	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	< 1.0 < 1.0	<10 <10
1 -Dic lo o e ze e N-Butybenzene		1760 1760	µg/l	1		03	300	:		<1.0 <10 <1.0	<10 <10	<10 <10	<10 <10	<10	<1.0 <10 <1.0	< 1.0 < 1.0 < 1.0	<10 <10 <10
1.2-Dichlorobenzene		1760	ugi ugi ugi			1 0004	1000	-	-	<1.0	< 1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0	<10
1.2-Dibromo-3-Chiorocropane 1.2, -Trich orobenzene		1760 1760	JUD 1	1		0.001	1			< 50 < 1.0	< 50 < 1.0	<50 <1.0	< 50 < 1.0	< 50 < 1.0	< 50 < 1.0	< 50 < 1.0	< 50 < 10
1,2,3-Trich orobenzene		1760 1760	ugi ugi	2		0.0006	0.6	0.0001	0.1	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	< 1.0 < 2.0	<10 <20
Methyl Tert-Butyl Ether Naphthalene		1760 1800	ugi ligu	0	.1	:	-	0.002	2	< 1.0 < 0.10	< 0.10	< 1.0 < 0.10	< 1.0 < 0.10		< 1.0 < 0.10	< 1.0 < 0.10	< 1.0 < 0.10
Acenaphthviene Acenaphthene		1800	ual ugl	0	.1 .1	-:	-	-		< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Fluorene Phenanthrene		1800	ugi ugi	0	l.1	-	<u> </u>	<u>:</u>		< 0.10 < 0.10	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Anthracene Fluoranthene		1800 1800	µg/l µg/l	0	l.1	0.000038	0.038	0.0001 ####	0.1 0.0063	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Pyrene		1800	lou fou	0	1	-:	:	-		< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10 < 0.10	< 0.10
Benzofalanthracene Chrysene Benzofbijfluoranthene		1800	191 191	0	11	0.001	1	-:-	- :	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	<0.10 <0.10 <0.10	< 0.10 < 0.10	< 0.10 < 0.10
Benzojkj luoranthene Benzojajpyrene	\dashv	1800	µg/l	0	.1	0.001 0.00001	1 0.01		-	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Indeno(1,2,3-c,d)Pyrene		1800	ual	0	.1	0.0001	0.1	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenzia h)Anthracene Benzoig h,]perylene Total Of 16 PAH's		1800	ual ugi		1	0.001	1	-	-	< 0.10 < 0.10 < 2.0	< 0.10 < 0.10	< 0.10 < 0.10	<0.10 <0.10 <2.0	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Reso di ol		1920	1001 01	0 005		-	0.5		7.7	< 0.0050	< 0.0050	<0.0050 <0.0050	< 0 0050	< 0 0050	< 2.0 < 0.0050	< 2.0 < 0.0050	< 2.0 < 0.0050
Phenol Cresols Xvieno s		1920 1920	mol	0.005		0.0005	-	0.0077	- 1.7	< 0.0050 < 0.0050	< 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050
1-Naphthol		1920 1920	l moi	0.005		-		-:-	- :	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050
Trimethylphenois Total Phenois		1920 1920 1920	mg/l mg/l	0.005	.03	-:	-	-:-		< 0.0050 < 0.030	< 0.0050	< 0.0050 < 0.030	< 0.0050 < 0.030	< 0.0050 < 0.030	< 0.0050 < 0.0050 < 0.030	< 0.0050 < 0.0050 < 0.030	< 0.0050 < 0.030

Project: E8384 Cambridge Wast	e Water	naime	of Plant												
Relocation		-							core	core	core	core	core	core	core
Client: Soil Engineering Geoservices Ltd Custat on No.:				Chemiest ob No : Chemiest Sample ID :					21- 0932 132 6 0	21- 09 0 132 663	21- 09 1 132 66	21- 09 3 132 669	21- 09 132 670	21- 09 5 132 671	21- 09 6 132 672
Order No.:				C lent Samo e Ref: Sample Location:					1 BH STW 026	1	1 BH STW 009	1 BH STW 015	1 BH STW 023	1 BH STW 02	1 BH STW 025
				Sample Type: Top Depth (m):	UK DW8 mg/l	UK DW8 ug/l	EQ8 mg l	EQ8 ug/l	WATER 8	WATER 8	WATER 10	WATER 10	WATER 10	WATER 10	WATER 8
				Date Sampled: Strata					19-Nov-2021 WMCK	18-Nov-2021 WMCK	18-Nov-2021 WMCK	19-Nov-2021 WMCK	18-Nov-2021 WMCK	18-Nov-2021 WMCK	18-Nov-2021 WMCK
Deferminand pH	Accred	80P 1010	Unit	LOD N/A					*	#	8	*	*	#	#
Total Dissolved Sol ds Alkalinity (Bicarbonate)		1020	ma	10			-			#	#	- :	:	**	
Chloride		1220	moil	1	250	250000		-	#	#	# 51	:	# 58	#	# 87
Fluoride Ammoniacai Nitrogen		1220	mol mg/l	0.05 0.05	1.5 0.38	1500 380 11295	0.2	200	0.15 0.66 < 0.50	0.12	0.15	0.13 0.16	0.1 0.1	0.13 0.17	0.1 0.23
Nitra e Sulphur Sulphate		1220 1220 1220 1220	mg/l mg/l	0.5 1	11.295	11295 - 250000			* 0.50 #	:	0.53 2 73	-	23 31 9	*	# 57
Cyanide (Free) Cyanide (Complex)		1300	mg/l	0.05	-	-			٠	0.05	< <	< <	< 0.050 < 0.050	· · ·	< <
Ca clum Potassium		1 55 1 55 1 55	mg/l	2 0.5	250 12	250000 12000	- :	- :	#	#	# 12	# 7	# 7	#	# #
Magnesium Sodium		1 55	mg/l	1.5	12 50 200	50000 200000	-:	-:-	**	#	# 18	# 7	# 19	**	# 22
Total Hardness as CaCO3 Arsenic		1270 1.55 1.55		15 0.0002	0.01	10	0.05	50 2000	*	*	< 0.0002	< 0.0002	0.0002	< 0.0002	* 0.0002
Boron Barlum		1 55 1 55	mg/l	0.01 0.005 0.001	1300	1000 1300000		- 2000	0.0 0.15	0.0 0.12	0.05	0.03 0.1	0.0 0.11 < 0.001	0,0 0,11	0.0 0.11
Beryllum Cadmium Copper		1 55	mol		0.005	5 2000	0.00008	0.08	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011 0.0006
Mercury Manganese		1 55 1 55	mo/l	0.00005	0.001 0.05	1 50	0.00007 0.123	0.07 123	< 0.00005 0.0 7	< 0.00005 0.03	< 0.00005 0.031	< 0.00005 0.02	< 0.00005 0.017	< 0.00005 0.03	< 0.00005 0.037
Molybdenum Nickel		1 55	mo/l	0.0002 0.0005	0.07	70 20	0.00	-	# 0.001	*	0.0005	- :	0.0003	0.0002	0.0003
Lead Antimony		1 55	g/l mg/l	0.0005	0.005	10 5	0 0012	12	< 0.0005	< 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005
Se enium Vanadium		1 55	mol	0.0005 0.0005	0.01	10		-	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005
Zinc iron Chromium (Trivalent)		1 55 1 55 1 90	mol mol	0.002 0.005 0.02	5 0.2	5000 200	0.0109 1 0.00 7	10.9 1000 .7	0.01 < [B] < 0.020	(B) <	0.00 < [B] < 0.020	0.008 < [B] 6.7	0.005 < 0.005 [B] 0.68	0.009 < [B] 3.8	0.00 < [B] < 0.020
Chromium (Hexavalent) Aliphatic TPH >C5-C6		1 90	mg/l	0.02 0.1	0.01	10	0.003	3.	[B] < 0.020 < 0.10	[B] <	[B] < 0.020 < 0.10	[B] < 0.020 < 0.10	[B] < 0.020 < 0.10	[B] < 0.020 < 0.10	[B] < 0.020 < 0.10
Aliphatic TPH >C6-C8 Aliphatic TPH >C8-C10		1675 1675	ual leu	0.1 0.1	0,01 0.01	10		-	< 0.10 < 0.10	< <	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aliphatic TPH >C10-C12 Aliphatic TPH >C12-C16		1675	ugi ugi	0.1	0.01 0.01	10	-	-	< 0.10	<	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Aliphatic TPH >C16-C21 Aliphatic TPH >C21-C35 Aliphatic TPH >C35-C		1675 1675	l pgrl	0.1 0.1 0.1	0.01 0.01	10 10			< 0.10 < 0.10	< <	< 0.10 < 0.10 < 0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	<0.10 <0.10
Total Allohatic Hydrocarbons Aromatic TPH >C5-C7		1675 1675 1675	ual ugl	5 0.1	0.01	10	0.01	10	<0.10 <5.0 <0.10	< 5.0	< 5.0 < 0.10	< 5.0 < 0.10	< 5.0 < 0.10	< 5.0 < 0.10	< 0.10 < 5.0 < 0.10
Aromatic TPH >C7-C8 Aromatic TPH >C8-C10		1675	ligu ligu	0.1	0.01 0.01	10 10 10	0.07	7	< 0.10	٠ .	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16		1675 1675	ug/l ug/l	0.1 0.1	0.01	10 10	-	-	< 0.10 < 0.10	<	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aromatic TPH >C16-C21 Aromatic TPH >C21-C35 Aromatic TPH >C35-C		1675 1675 1675	ual ugi	0.1 0.1 0.1	0.01 0.01 0.01	10 10 10	:	- :	< 0.10 < 0.10	٠	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Total o a ic H diocal o s Total Petro eum Hydrocarbons		1675 1675	light	5	-	-			<0.10 <50 <10	< 50 < 10	< 0.10 < 5 0 < 10	< 0.10 < 5.0 < 10	<0.10 <50 <10	< 0.10 < 5 0 < 10	< 0.10 < 5.0 < 10
Dichlorod fluoromethane Chloromethane		1760 1760	ual	1	:		-:-	-:	<1.0 <1.0	< 1.0 < 1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
Vinyl Chior de Bromomethane		1760 1760 1760	l ug/l	1 5	0.0005	0.5	- :	-:	<1.0	< 1.0	<10	< 1.0	<1.0	<1.0	< 1.0
Chioroethane Trichiorofluoromethane		1760	pg/l	1	:		-:	-	<2.0 <1.0	< 2.0 < 1.0	<20 <10	< 2.0 < 1.0	<2.0 <1.0	<2.0 <1.0	< 2.0 < 1.0
1,1-Dichioroethene Trans 1.2-Dich oroethene		1760	ual	1	-	-	-	-	<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
1,1-Dichioroethane cis 1 2-Dichioroethene Bromochioromethane		1760 1760 1760	l pgl lgq lgq	1	-	-	-	-	<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	< 1.0 < 1.0	<1.0 <1.0	< 1.0 < 1.0
Trichloromethane 1,1,1-Trich oroethane		1760 1760	µg/l	1	:		0.1	100	<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
Tetrach oromethane 1.1-Dichioropropene		1760 1760	uo1	1	:	-	-:	- :	<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
Berizene 1,2-Dichloroethane Trichloroethene		1760 1760 1760	ugi ligu	2	0.001 0.003 0.01	1 3 10	0.01 0.01 0.01	10 10 10	<1.0 <2.0 <1.0	< 1.0 < 2.0 < 1.0	<10 <20 <10	< 1.0 < 2.0 < 1.0	<1.0 <2.0 <1.0	<1.0 <2.0 <1.0	< 1.0 < 2.0 < 1.0
1,2-Dichioropropane Dibromomethane		1760 1760	l pg/l	1 10	0.0	0			<1.0 <10	< 1.0 < 10	<10 <10	< 1.0 < 10	<1.0 <1.0	<1.0 <10	< 1.0 < 1.0 < 10
Bromodich oromethane cls-1,3-Dichloropropene		1760 1760	ual	5	0.06	60	-:	-:-	< 10	< 10	< 10	< 10	<10	<10	< 10
Toluene Tas-13-Dicoooee		1760 1760	l µgi	10	0.7	700	0.07	7	<1.0 <10	< 1.0 < 10	<10 <10	< 1.0 < 10	<1.0 <10	<1.0 <10	< 1.0 < 10
1,1,2-Trich oroethane Tetrach groethene		1760	uol	10	0.01	10	0. 0.01	10	<10 <1.0 <2.0	< 10 < 1.0 < 2.0	<10 <10 <20	< 10 < 1.0 < 2.0	<10 <1.0 <2.0	<10 <1.0 <2.0	< 10 < 1.0 < 2.0
1.3-Dichloropropane Dibromoch oromethane 1,2-Dibromoethane		1760 1760 1760	l ual leu leu	10	0.1	100	-		< 10	< 10	< 10	< 10	<10	<10	< 10
Chlorobenzene 1,1,1,2-Tetrachloroethane		1760 1760	l pgl	1 2	-:	-:	-:	-:	<1.0 <2.0	< 1.0 < 2.0	<10 <20	< 1.0 < 2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0 <1.0
Ethylbenzene m & p-Xviene		1760 1760	l pg/	1	0.3	300	0.01	10	<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0
o-Xylene Styrene Tribromomethane		1760 1760	l pgl	1	0.02	20	0.01	10	<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0	<10 <10 <10	< 1.0 < 1.0 < 1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0
Tribromomethane Isopropylbenzene Bromobenzene		1760 1760 1760	l pgl lgu l	1					<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0	<10 <10 <10	< 1.0 < 1.0 < 1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0
1.2.3-Trich oroorooane N-Proovibenzene		1760 1760	uol uol	50	-	-:	-	-	< 50 < 1.0	< 50 < 1.0	< 50 < 10	< 50 < 1.0	< 50 < 1.0	< 50 < 1.0	< 50 < 1.0
2-Chlorotoluene 1,3,5-Trimethylbenzene		1760 1760	l pgl	1	-	-	-		<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
-Chlorobiuene Tert-Buty/benzene		1760 1760	l pgl	1					<1.0 <1.0	< 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1.2Trimethylbenzene Sec-Butylbenzene 1,3-Dichlorobenzene		1760 1760 1760	l ug/l	1	-				<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0	<10 <10 <10	< 1.0 < 1.0 < 1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0
-isopropytoluene 1 -Dic lo o e ze e		1760 1760 1760 1760	l pgl	1	- 03	300	-	:	<1.0 <10	<1.0 <10	<10 <10	<1.0 <10	<1.0 <10	<1.0 <10	<1.0 <10
N-Butylbenzene 1.2-Dichlorobenzene		1760	l ug/l	1	1	1000	-		<1.0 <1.0	< 1.0 < 1.0	<10 <10	< 1.0 < 1.0	<1.0 <1.0	<1.0 <1.0	< 1.0 < 1.0
1,2-Obromo-3-Chioropropane 1,2, -Trich oroberszene		1760 1760		1	0.001 - 0.0006	1 - 0.6	0.0001	0.1	< 50 < 1.0 < 1.0	< 50 < 1.0 < 1.0	< 50 < 10 < 10	< 50 < 1.0 < 1.0	< 50 < 1.0 < 1.0	<50 <1.0 <1.0	< 50 < 1.0 < 1.0
Hexach orobutad ene 1,2,3-Trich orobenzene Methyl Tert-Butyl Ether		1760 1760 1760	l pgl	2	-	-	-:	-	< 1.0 < 2.0 < 1.0	< 1.0 < 2.0 < 1.0	<10 <20 <10	< 1.0 < 2.0 < 1.0	<1.0 <2.0 <1.0	<1.0 <2.0 <1.0	< 1.0 < 2.0 < 1.0
Naphthalene Acenaphthylene		1800	l pg/	0.1 0.1		-	0.002	2	< 0.10 < 0.10	< <	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Acenaphthene Fluorene		1800 1800 1800	l pgl	0.1 0.1 0.1 0.1	:			-:-	< 0.10 < 0.10 < 0.10	< <	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	<0.10 <0.10 <0.10	< 0.10	< 0.10 < 0.10 < 0.10
Phenanthrene Anthracene Shoronthana		1800	µg/l	0.1	- 0.000000		0.0001	0.1	< 0.10	< <	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene Pyrene Benzofalanthracene		1800 1800 1800	ual	0.1 0.1 0.1 0.1	0.000038	0.038	-	0.0063	< 0.10 < 0.10 < 0.10	< <	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Chrysene Benzolbilluoranthene		1800		0.1 0.1	0.001	1	:	:	< 0.10 < 0.10 < 0.10	< <	< 0.10 < 0.10 < 0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Benzo(k) luoranthene Benzo(a)pyrene		1800	l pgl	0.1 0.1	0.001	1 0.01	*****	-	< 0.10 < 0.10	< <	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Indeno(1,2,3-c,d)Pyrene Dibenzia.h)Anthracene		1800	uol uol	0.1 0.1 0.1	0.0001	0.1		- :	< 0.10 < 0.10	<	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Benzo(g.h,)perylene Total Of 16 PAH's Reso d ol		1800 1800 1920	l pgl	0.1 2 0.005	0.001	1		-	< 0.10 < 2.0 < 0.0050	< 2.0 < 0.0050	< 0.10 < 2.0 < 0.0050	< 0.10 < 2.0 < 0.0050	< 0.10 < 2.0 < 0.0050	<0.10 <2.0 <0.0050	< 0.10 < 2.0 < 0.0050
Phenol Cresols		1920	mg/l	0.005 0.005	0.0005	0.5	0.0077	7.7	< 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050 < 0.0050	< 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050
Xvieno s 1-Naphthol		1920 1920	mol mg/l	0.005 0.005	:		-:	:	< 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0.0050 < 0.0050
Trimethylphenois Total Phenois		1920 1920	mg/l	0.005	:	-		-:	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050 < 0.030	< 0.0050	< 0.0050

Project: E8384 Cambridge Wast Relocation	e Water reatme	nt Plant						Quy Fen ma n po	Surface water All cky Fe m Ponc	Black d tch
Client: Soil Engineering Geoservices Ltd			Chemitest ob No:					21- 09 9	21- 0950	21- 0952
Geosentices Ltd Guotat on No.: Order No.:			Chemtect Sample ID : Clent Sample Ref.:					132 689	132 690	132 693
			Sample Location: Sample Type:	UK DW8 mg/l	UK DW8 ug/l	EQ8 mg l	EQ8 ug/l	SW01 WATER	SW02 WATER	SW03 WATER
			Top Depth (m): Date Sampled:					0		
Determinand	Accred SOP		Strata LOO				_	n/a	n/a	n/a
pH Total Dissolved Sol ds	1010	mg/l	N/A 1	-	-	- :	-	8. 590	8. 650	8.2 790
Alkalinity (Bicarbonate) Chloride	1220	CaCO3/I	10	250	250000	-	-	230 89	380 120	10
Fluoride Ammoniacai Nitrogen	1220	mo/1	0.05 0.05	1.5 0.38	1500 380	0.2	200	0.18	0.21	0.17
Nitra e Sulphur	1220 1220 1220	mg/l mg/l	0.5	11.295	11295	-:-	- :	< 0.50 33	< 0.50 0	3
Sulphate Cyanide (Free)	1220	mg/l	0.05	250	250000	-:	- :	100 < 0.050	120 < 0.050	120 < 0.050
Cvanide (Complex) Calcium	1300 1 55	mo/ mg/l	0.05	250	250000	-	-	< 0.050 120	< 0.050 160	< 0.050 180
Potassium Magnesium Sodium	1 55 1 55 1 55	mg/l mg/l	0.5 0.2 1.5	12 50 200	12000 50000 200000	-		8.3 36	2.8 5.7	5.7 0
Total Hardness as CaCO3 Arsenic	1270	ng/1	15	0.01	10	0.05	- 50	3 0	30 0.001	0,0006
Boron Barlum	1 55 1 55 1 55	mo/1	0.01 0.005	1300	1000 1300000	2	50 2000	0.0015 0.05	0.03 0.11	0.0
Beryllum Cadmium	1 55	mg/l mg/l	0.001	0.005	5	0.00008	0.08	< 0.001	< 0.001	< 0.001
Copper Mercury	1 55	mo/1	0.0005 0.00005	0.001	2000	0.001	0.07	0 0023	0 0025	0 0029
Manganese Molybdenum Mirkel	1 55 1 55 1 55	mol	0.0005 0.0002 0.0005	0.05 0.07 0.02	50 70 20	0.123 - 0.00	123	0.003 0.0007 0.0032	0.0002 0.0008	0.0073
Nickel Lead Antimony	1 55	mg/l	0 0005	0.02 0.01 0.005	10	0 0012	12	< 0 0005 0.0006	< 0.0005 < 0.0005	< 0 0005 0.0006
Se enium Vanadium	1 55 1 55	mg/ mg/	0.0005 0.0005	0.01	10		-	0.0015	0.0008	0.0015 < 0.0005
Zinc iron Chromium (Trivalent)	1 55 1 55 1 90	mg/1	0.002 0.005 0.02	5 0.2	5000 200	0.0109	10.9 1000	# 0.01	:	0.01 #
Chromium (Trivalent) Chromium (Hexavalent) Allphatic TPH >C5-C6	1 90 1 90 1675	mg/1	0.02 0.02 0.1	0.01	- 10	0.00 7	3.	[B] < 0.020 < 0.10	[B] 7 2 [B] < 0.020 < 0.10	[B] < 0.020 < 0.10
Alighatic TPH >C6-C8 Alighatic TPH >C6-C10	1675 1675 1675	ugi ugi lgu	0.1 0.1 0.1	0.01 0.01 0.01	10 10 10			< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Alphatic TPH >C10-C12 Alphatic TPH >C10-C12 Alphatic TPH >C12-C16 Alphatic TPH >C16-C21	1679	100/1	0.1 0.1	0.01	10	:	:	< 0.10	< 0.10	< 0.10
Allphatic TPH >C21-C35	1679 1679 1679	i pg/l	0.1 0.1	0.01 0.01	10 10	-:	- :	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Aliphatic TPH >C35-C Total Aliphatic Hydrocarbons	1679 1679 1679	l ug/l	0.1 5 0.1				-	< 0.10	< 0.10	< 0.10
Aromatic TPH > C5-C7 Aromatic TPH > C7-C8 Aromatic TPH > C8-C10	1679 1679 1679	pg/l	0.1	0.01 0.01 0.01	10 10 10	0.01 0.07	7	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	1679	light .	0.1 0.1	0.01 0.01	10	-		< 0.10 < 0.10 < 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	1679	LIO/I	0.1 0.1	0.01	10	:	- :	< 0.10	< 0.10 < 0.10	< 0.10
Aromatic TPH > C21-C35 Aromatic TPH > C35-C Total o a ic H diocal o s	1679 1679 1679	i pg/l	0.1 5	0.01 0.01	10 10 -	-:-	- :	< 0.10	< 0.10	< 0.10
Total Petro eum Hydrocarbons Dichlorod fluoromethane	1679	lou	10	-	-	-	-	< 10	< 10	< 10
Chioromethane Vinyl Chior de Bromomethane	1760 1760	l pg/l	1	0.0005	0.5	-		< <	< < <5	< < <5
Chioroethane Tr chiorofluoromethane	1760 1760 1760	leu pol leu pol leu le	2	:	-:	:	-:	< <	< <	٠
1,1-Dichioroethene Trans 1.2-Dich oroethene	1760 1760 1760	l pg/l	1	:	:		- :	< <	۷ د	< <
1,1-Dichioroethane cis 1 2-Dichioroethane Bromochioromethane	1760	ועש ונ	1 5	:	-	-	-	< < <5	< <	< < <5
Tr chioromethane 1,1,1-Trich oroethane	1760 1760 1760	ligu to ligu to	1			0.1	100	<	<	< <
Tetrach oromethane 1.1-Dichloropropene	1760	l usi	1	-:	-:	-	-	٠	< <	< <
Berizene 1,2-Dichloroethane	1750 1750 1760	1 pg/1	1 2	0.001	3	0.01 0.01	10 10	<	< <	< <
Tr chloroethene 1,2-Olchloropropane	1760 1760 1760	l pg/l	1 10	0.01	10	0.01	-	< < <10	< < <10	< < <10
Dibromomethane Bromodich oromethane cls-1,3-Dichloropropene	1760	l uol	5	0.06	60	-		< 5 < 10	< 5 < 10	< 5 < 10
Toluene Tas-13-Dicoooee	1760 1760 1760	l pg/l	1 10	0.7	700	0.07	7	< 10	< 10	< 10
1,1,2-Trich oroethane Tetrach oroethene	1760	l ugi	10	0.01	10	0. 0.01	10	< 10	< 10	< 10
1.3-Dichioropropane Dibromoch oromethane 1,2-Dibromoethane	1760 1760	l ual	10	0.1 0.000	100			< 10	< 10 < 5	<10
Chlorobenzene 1,1,1,2-Tetrachloroethane	1760 1760 1760	l pg/l	1 2	-:	-:			< 5 <	٠	< 5 <
Ethylbenzene m & p-Xviene	1760	l pgl	1	0.3	300	0.01	10	٠	< <	< <
o-Xylene Styrene Tribromomethane	1760 1760 1760	l pgl	1	0.02	20	0.01	- 10	< <	< <	< <
Inpromomenane Isopropylberizene Bromoberizene	1760 1760	l µg/l	1 1		-			< <	< <	<
1.2.3-Trich oroorooane N-Prooviberizene	1760 1760	uol	50	-:	-	- :	- :	< 50 <	< 50 <	< 50 <
2-Chlorotoluene 1,3,5-Trimethylbenzene	1760 1760 1760	l pg/l	1	-	:	-	:	<	٠	•
-Chlorotoluene Tert-Buty/benzene 1.2Trimethy/benzene	1760 1760 1760	l pg/l	1 1					٠ .	٠	٠
1.2Trimethybenzene Sec-Butybenzene 1,3-Dichlorobenzene	1760	l ug/l	1			-		< <	< <	٠
isopropytoluene 1 -Dic lo o e ze e	1760 1760 1760 1760	l pg/l	1	03	300	1	:	٠ .	< <	<
N-Butylbenzene 1.2-Dichlorobenzene	1760	uol	1	1	1000	-		<	<	٠
1.2-Dibromo-3-Chiorocropane 1,2, -Trich oroberszene	1760 1760 1760 1760	ual ugi	1	0.001	1		0.1	< 50 <	< 50 <	< 50 <
Hexach orobutad ene 1,2,3-Trich orobenzene Methyl Tert-Butyl Ether	1760 1760 1760	l pgl pgl	1	0.0006	0.6	0.0001	-:-	٠	۷ .	٠
Naphthalene	1800	l pg/l	0.1 0.1		-	0.002	2	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Acenaphthene Acenaphthene Fluorene	1800 1800 1800	ligu i ligu i	0.1 0.1 0.1 0.1	-:	:	-		< 0.10 < 0.10 < 0.10	<0.10 <0.10 <0.10	< 0.10 < 0.10 < 0.10
Phenanthrene Anthracene	1800 1800 1800	l pg/l		- 0.000038	0.038	0.0001	0.1 0.0063	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Fluoranthene Pyrene Benzolalanthracene	1800 1800 1800	ual	0.1 0.1 0.1	-	-	-	-	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Unrysene Benzolb Nuoranthene	1800	l µgl	0.1 0.1	0.001	1	-	-	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Benzojkj luoranthene Benzojajpyrene	1800	l pgl	0.1 0.1	0.001 0.00001	0.01	-	- ##	< 0.10	< 0.10 < 0.10	< 0.10
Indenoi 1.2.3-c.d Pyrene Diberzia h)Anthracene	1800	l ual	0.1 0.1 0.1	0.0001	0.1		-	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10
Benzo(g.h. jperylene Total Of 16 PAH's Reso d ol	1800 1800 1920	1 µg/1		0.001	1			< 0.10 < < 0.0050	< 0.10 < 0.0050	< 0.10
Phenol Cresols	1920	mg/l	0.005	0.0005	0.5	0.0077	7.7	< 0.0050 < 0.0050	< 0.0050 < 0.0050	< 0 0050 < 0 0050
Xvieno s 1-Naphthol	1920	mo/1	0.005 0.005	-	-		-	< 0.0050 < 0.0050 < 0.0050	< 0.0050 < 0.0050 < 0.0050	< 0 0050 < 0 0050 < 0 0050
Trimethylphenois Total Phenois	1920 1920 1920	mg/l	0.005	:	-	- :		< 0.0050 < 0.030	< 0.0050 < 0.030	< 0.0050 < 0.030

Get in touch

You can contact us by:

Emailing at info@cwwtpr.com

Calling our Freephone information line on 0808 196 1661

Writing to us at Freepost: CWWTPR

Visiting our website at

You can view all our DCO application documents and updates on the application on The Planning Inspectorate website:

https://infrastructure.planninginspectorate.gov.uk/projects/eastern/cambridge-waste-water-treatment-plant-relocation/

